Stochastic Weight Update in Neural Networks
نویسندگان
چکیده
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملThe Method of Steepest Descent for Feedforward Artificial Neural Networks
In this paper, we implement the method of Steepest Descent in single and multilayer feedforward artificial neural networks. In all previous works, all the update weight equations for single or multilayer feedforward artificial neural networks has been calculated by choosing a single activation function for various processing unit in the network. We, at first, calculate the total error function ...
متن کاملSynaptic Weight Generation in VLSI Stochastic Neural Networks. - Neural Networks, 1995. Proceedings., IEEE International Conference on
Fully parallel stochastic neural network implementations can be realized nowdays. However, in these implementations most of the silicon area is consumed in the stochastic pulse sequence generation circuits. In order to improve their efficiency in terms of consumed silicon area, new techniques must be developped. This is specially important in applications where a large number of synaptic weight...
متن کاملTraining Neural Networks with Stochastic Hessian-Free Optimization
Hessian-free (HF) optimization has been successfully used for training deep autoencoders and recurrent networks. HF uses the conjugate gradient algorithm to construct update directions through curvature-vector products that can be computed on the same order of time as gradients. In this paper we exploit this property and study stochastic HF with gradient and curvature mini-batches independent o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012